>> https://web.archive.org/web/20120914043825/http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/aluminium_water_hydrogen.pdf > daug skaityt. > Tu gal esme gali sutraukt i cia jei skaityt fragmentais, praleidziant kur daug raidziu ar vietas, kur nelabai susiskaito ar sunkiau suprantama, tai to skaitymo nedaug :D Tikslumo gali ir nebut, nes cia is mokykliniu prisiminimu: 2Al + 6H2O = 2Al(OH)3 + 3H2 (1) 2Al + 4H2O = 2AlO(OH) + 3H2 (2) 2Al + 3H2O = Al2O3 + 3H2 (3) 2 moliai aliumo - 2*27 g/mol = 54 g. 3 moliai H2 - 3*2 g/mol = 6 g. 3-6 moliai vandens - 3-6 * 18g/mol = 54-108 g. Kuras (vanduo+aliuminis) - ~108-162g. duoda 6g. vandenilio 8 kg aliumo + 8-16 litro vandens = 1,6 g/s vandenilio (max 889 g., t.y. 555 sekundziu, t.y. ~10 min) 3 val kuro = 18*8=144 kg aliumo ir ~144-288 litrai vandens. Vanduo perdirbamas sakykim, bet aliuma redukuot reik, vadinasi 144 kg aliumo pavirto i ~288-296 aliumo-(hidr)oksido. Plius dar be situ komplikaciju ten yra ka veikt.. nu ner sarminis metalas tas aliumas, kad pyst su vandeniu ir fygarina vandenili taip paprastai kaip mokykloj rode.. Standartiskai Aliumas + rugstis => aliumo_druska + vandenilis *************************** Fragmentai: Even assuming high volume production, the DOE target range for hydrogen cost of $2-3 per kg H2 would not be met. Additionally, the supply of aluminum required for mass market vehicle applications may be problematic. The following are possible reactions of aluminum with water: 2Al + 6H2O = 2Al(OH)3 + 3H2 (1) 2Al + 4H2O = 2AlO(OH) + 3H2 (2) 2Al + 3H2O = Al2O3 + 3H2 (3) All these reactions are thermodynamically favorable from room temperature past the melting point of aluminum (660*C). All are also highly exothermic. Promoters: <...> katalizai Molten Aluminum Alloys: << aliuminio lydiniai A delivery rate of 1.6 g H2/sec is required for an 80 kW vehicular fuel cell. At a kinetic reaction rate of 2 x 10-4 g H2/sec/g of Al for the aluminum-water reaction (the maximum value in the literature), one must react 8000 g of aluminum with the necessary amount of water in order to achieve the hydrogen delivery rate of 1.6 g H2/sec needed to supply the 80 kW fuel cell. Summary: The key aspects associated with the production of hydrogen using the aluminum-water reaction are: Aluminum Required: 9 kg Al per kg H2 assuming 100% yield Gravimetric Hydrogen Capacity: 3.7 wt.% (materials only) Volumetric Hydrogen Capacity: 36-46 kg H2/L (materials only) Reaction Kinetics: 2 x 10-4 g H2/sec/g of Al ? from published data to date Cost: $7 per kg H2 (based on the cost of electricity for aluminum production considering only the reduction of alumina to aluminum step)